
AO-AI03 327 DAVID W TAYLOR NAVAL SNIP RESEARCH AND DEVELOPMENT CE--ETC F/6 9/2

SOFTWARE ENGINEERING - A GUIDELINE.CU)
AUG 61 0 J HIBBERT

UNCLASSIFIED DTNSRDC/CMLD-81 22 N

MOOT

DAVID W. TAYLOR NAVAL SHIP
RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

Software Engineering = A Guideline

0

by
Dabney J. Hibbert

APPROVED FOR PUBLIC RELEASE:DISTRIBUTION UNLIMITED

14 E E CT'--
z Computation, Mathematics AUG261981

and Logistics Department A

August 1981 CMLD8122

81 8 26 016

MAJOR DTNSRDC ORGANIZATIONAL COMPONENTSI,,
OTNSRDC

COMMANDER

TECHNICAL DIRECTOR
01

OFFICER-IN-CHARGE OFCERNCHARGE
CARDEROCK 05 ANNAPOLIS

SYSTEMS

DEVELOPMENT
DEPARTMENT

11

SHIP PERFORMANCE AVIATION AND

DEPARTMENT SURFACE EFFECTS
15 DEPARTMENT 16

STRUCTURES COMPUTATION

DEPARTMENT AND MATHEMATICS
17 DEPARTMENT

SHIP ACOUSTICS PROPULSION AND
DEPARTMENT AUXILIARY SYSTEMS

19 DEPARTMENT 27

MATERIALS CENTRAL
DEPARTMENT INSTRUMENTATION

28 DEPARTMENT

NDW-DTNSRDC 3960/43 1Rev. I 1-7S)
GpO 909.679

SECURITY CLASSIFICATION OF THIS PAGE 'Whlen Data Entered) _______________

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

/ ... " 2. GOVT ACCESSION NO. 3, RECIPIENT'S CATALOG NUMBER

'/a,-81-22 ,1 :-4/13. I
" 4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Software Engineering - A Guideline Final
6. PTORMINGo RO.-REPORT ",UMBER

7. AUTHOR(s) b. CONTRACT OR GRANT NUMBER(*)

Dabney J. Hibbert

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

David W. Taylor Naval Ship R&D Center
ADP Software Specialist (Code 189.1)
Bethesda, Md. 20084

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE/

13. IMMSIER Of PAGE&

14
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15, SECURITY CLASS. (of thee report)

ISa. DECLASSIFI CATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thl Report)

APPROVED FOR PUBLIC RELEASE:DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abtract entered In Block 20, It different from Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side it neceeary aid Identify by block number)

Software Engineering, Software Development, Documentation,
Structured Programming, Validation, Software Tools

20 ASBSA4CT (Continue on reveres aide It neceseary and Identify by block number)

This report gives users of the DTNSRDC computers an overview
of the principles of software engineering and describes various
software engineering techniques that users with either large or
small applications would find beneficial.

D 'jA,oR 1473 EDITION OF I.o NOV I51 OBSOLETE
I

DD .%~, 143 EITN OF02-NO 661 ISEOUSOLTT CLASSIFICATION OF THIS PAGE (When Veto Interie)

'laJ

,.41TY CLASSIFICATION OF THIS PAGE(Wh*l Date Eneor~d)

SECURtITY CLASSIFICATION OF THIS PAOIE(Whefl Date Enter od)

CONTENTS

Page
ABSTRACT 1

BACKGROUND & DEFINITION 1

PURPOSE 2

CONCEPTS AND SUGSESTED TECHNIQUES 3
PROJECT DEVELOPMENT TEAM APPROACH 3
DOCUMENTATION 5
STRUCTURED PROGRAMMING 5
VALIDATION 6
SOFTWARE TOOLS 6
EVALUATION METHODS 7

WHAT TYPES OF USERS NEED SOFTWARE ENGINEERING? 7
SMALL/ONE-TIME APPLICATIONS 7
LARGER APPLICATIONS * 8

REFERENCES ..9

LIST OF FIGURES

1 - RARDWARE/SOFTWARE COST TRENDS 2

2 - PROJECT DEVELOPMENT GROTP nRrANIZATION 4

3 - STRUCTURED PROGRAMMING METHODOLOGIES 6

AccesSion For

!;TS GFA&I
:1iC TAB
Uunnounced El
j'.;t if icat ion -

SBy_

Distribution/

Availability Codes

Avail and/or

D Special

ABSTRACT

This report gives users of the DTNSRDC computers an overview
of the principles of software engineering and describes various
software engineering techniques that users with either large or
small applications would find beneficial.

BACKGROUND & DEFINITION

The term "Software Engineering" was coined during the late
1960's at a NATO Science Committee conference. Since then, many
articles and books have been published in an attempt to define
this approach to producing and managing software. These defini-
tions are based on the types of theoretical foundations and prac-
tical disciplines found in the more common branches of engineer-
ing.

"Software engineering is a discipline, rather
than a technology. While it uses technology,
it also encompasses the methods and practices
of people who produce software. Many of the
problems with today's software, viz. its high
cost, long delivery time, and unreliability,
have been attributed to inadequate software
engineering".[l

"Software engineering is not just a col.lec-
tion of tools and techniques, it is ... a
full-fledged engineering discipline...".[21

"...the establishment and use of sound
engineering principles (methods) in order to
obtain economically software that is reliable
and works on real machines."[3

These authors and others have recoqnized the basic need of
any group responsible for producing or managing software to
establish a discipline, technique, or method by which reliable,
flexible, and timely software is developed, tested, and main-
tained.

- - '- . I -

i PURPOSE

p The decrease in hardware costs and increase in software
costs in recent years, combined with the growing lag between com-
puter hardware development and software technology, have produced
what many experts have called the first part of a "software
crisis". This continuing trend is reflected in Figure 1.

100'

80
HARDWARE

60
of

total 40

SOFTWARE

1955 1970 1985

Year

Figure 1. Mardware/Software cost Trends
(Source of Data; Boehm [4])

As the chart illustrates, during the last 25 years, both the cost
of raw computinq power and the per unit cost of memory and
storaqe have been dramatically reduced. At the same time, the
cost of producing the additional software necessary to take
advantage of this increasing computer capacity continues to rise.

Deficiencies in the areas of talent and effective
tools/methods make up the second part of the "software crisis".
There is a continuing shortage of talent in the software areas of
design, development, and management. This skilled manpower shor-
tage has often caused projects to be carried out by a mix of peo-
ple with differing types of data processing skills and experi-
ence. Also, few software projects have been completed within the
constraints of original cost, schedule, and performance specifi-
cations. A large part of the cost overrun problem is due to a
growing lag in the development of software tools and methods to
manage the growing complexity of sophisticated software systems.
Lack of planning and hardware problems also contribute to cost
overruns.

-2-

Additionally, when software evolves in a continually chang-
ing R&D environment, it is especially important to attempt to
"extend code life expectancy by stressing designs with built-in
flexibility and re-utilization potentials."[5]

Software management can be defined as "the technical and
management control throughout the life cycle of all software that
supports an organization's mission and objectives."[6] This
management is the responsibility of the computer user organiza-
tion. It serves to establish accountability for project deci- V

sions and objectives and also provides upper management with vis-
able measures of progress toward desired qoals. Good software
management, initiated at the beginning of a project's life cycle,
tends to produce a higher quality software product. High-quality
software can be defined as having the following characteristics:

1. Reliability 4. Portability
2. Clarity 5. Efficiency/Economy
3. Maintainability 6. Testability

Many authorities agree that a software engineering approach
will alleviate many software development problems.

"An engineering effort involves a specific
sequence of steps beginning with a general
plan, proceeding through detailed design, and
concluding with implementation of the
design."[7]

When applied to a software design effort, it assures the likeli-
hood that the final product will better resemble the system
design, while allowing individual creativity and innovation.

CONCEPTS AND SUGGESTED TECHNIOUES

The following section describes some software engineering
techniques that may be used to achieve the aforementioned goals
of hiah-quality, economical, and timely software in the areas of
software development

PROJECT DEVELOPMENT TEAM APPROACH

A project development team is often the basic organization
used to improve manageability and productivity of software pro-
jects. This approach allows management to assemble the necessary

-3-
A* h.!I

mixture of various skills from the talent available and is an
effective method for overcoming the talent shortage. Addition-
ally, the project team approach allows for peer review, better
dissemination of technical and status information, and better
back-up of knowledgeable personnel. This approach also allows for
a certain amount of on-the-job training when a team consists of
both trainee and journeyman personnel. The optimum design group
is made up of two-man teams, each working on a module or project
element. Figure 2 illustrates a suggested organizational struc-ture for a large project.

IProject Managerl

Software _____

Dev. Project ________________
______ ______SDP IISoftware Dev.

IProj. Leader

Task (Mask Grpsl
(rqoup

TG
ITask Leaderl

Design IDesign Teamsi
Team

DT

Sr Team IAsst.
Leader I Designer

Figure 2. Project Development Group Organization
(Source of Data; Jensen [21)

At each level, the leader is technically involved. The short
communication paths ensure good communication between the project
team members. Periodic design walkthrouqhs with the other ele-
ments ensure correct interfacing. This structure may be scaled-
down for smaller projects, eventually to as small as two people,
with the more experienced person being the project leader as well
as part of the design team.

The aevantages of this approach are:

- the more effective use of human resources

-4-

- a better design due to continuous walkthroughs

- insurance against loss of personnel

- an improved training atmosphere for "junior" programmers

DOCUMENTATION

Documentation is a key element at all levels nf proiect
development. System requirement documents and technical reviews
serve as quality controls for the Definition and Initiation
phases of a project. An on-goinq Proiect Pecord, initiated at
project conception, should continue during the system life. "'he
Project Record is an open, official record of the maior decisionsI
and pertinent documents and specifications. Note that the Pro-
ject Record is not a Technical Notebook, which is also an effec-
tive control method used as an informal medium for exchanqing
tentative proposals among designers and programmers. Design
Specifications, specifying the input and output of each process
and the data flow interconnections, and a formal Test Plan,
detailing the testing schedule and range of test cases, are two
other recommended documents.

STRUCTURED PROGRAMMING

Structured programming techniques, a concept that encom-
passes programming team management, design methods, and program-
ming technology, may also be used. Of the many definitions of
this basic, scientific methodology cited in software literature,
perhaps the most preferred is:

""Structured programming" is the formulation
of programs as hierarchical, nested struc-
tures of statements and objects of computa-
tion."[8]

Structured proqramming is often referred to as "modular" or
"top-down" programming. 'The many methods and programming tech-
niques vary widely, but all have as their obiective a more organ-
ized and more manageable software product achieved by subdividing
a complex problem into its basic elements. Some structured pro-
gramming methodologies are listed in Figure 3. romplete descrip-
tions of the individual approaches can be found in the refer-
ences.

This partitioning technique allows the creation of well-
defined, functional modules and focuses attention on interfaces
among modular entities. Another important benefit is the Iden-
tification of distinct, independant software development tasks.
The project leader is thereby able to assign design responsibil-
ity for a new process or procedure to a team, which "proceeds in

--5-

NAME APPROACH APPLICATIONS

Top-Down Based upon decomposition Data processing and
Design by trial and error and algorithmic*
[91 [10]

Structured Based upon decomposition Data processing and
Design [ii determined by data flow and algorithmic*

or data transformations

Jackson Based upon decomposition Data processing
Method [121 determined by data

structure

*Implementation determined primarily by algorithm
that defined function (e.g. Gauss-Seidel iterative
method for solving system of linear equations)

Figure 3. Structured Programming Methodologies
(Source of Data; Jensen [2])

a top-down fashion to analyze the requirements and formulate a
solution."[5]

VALIDATION

Validation, or verification, confirms that a project/system
is reliable and meets its specifications as well as the require-
ments of the user environment. Ideally, an informal design review
is held with the tasked project group before implementation
begins. Iterative reviews should continue throughout the project
life cycle up to the delivery and operation phases.

Additionally, before the design phase is complete, a formal
test plan for the system is advisable. This test plan should be
3 -ntly agreed upon by the user and design groups. Specific
testing criteria and guidelines should be adopted for all pro-
qrams of the system and the testing should assure a high measure
of reliability that would be expected in operation of computer
programs. Furthermore, a shakedown period is advisable after the
delivered software is installed.

SOFTWARE TOOLS

A standard library of specialized software tools should be
established. Software tools are computer programs that automate
tasks in the management, production, and testing of software.
These tools are usually inexpensive, are often available from
other users for the cost of reproduction, and are often concise

-6-

and easily modified for unique project needs. Some standard
tools are an editor, program analyzer, and program librarian.
Text editors are an excellent example of available and useful
software tools that serve a standardized, special function suffi-
ciently well and interface readily with other tools/programs.
Program analyzers are software which scan a source program and
collect data about its execution behavior. Program librarians
provide for the storage and retrieval of different versions of
program modules

EVALUATION METHODS

Engineering analysis, modeling or simulation, and experience
data can be used to establish the performance needed in critical
software operations. Concrete, measurable milestones of progress
for the design, programming, testing, installation, and initial
operation of the system, should also be developed to ensure that
effective control of the emerging system can be maintained
throughout its life cycle.

WHAT TYPES OF USERS NEED SOFTWARE ENGINEERING?

The following sections are intended to serve as guides to
the users of the different computer systems available at DTNSRDC.

SMALL/ONE-TIME APPLICATIONS

Users with small and one-time applications, either on a
strictly interactive system or on a combination of interactive
and batch, should make use of at least two or three of the

Software Engineering techniques described above.

The first technique, documentation, provides an invaluable
permanent record of a programmer/scientist's work. Often a small
task is later added to and becomes a major effort, or an intended
one-time application is used more than once. A complete, per-
manent description of the initial effort will make the later task
easier and more time-efficient. Likewise, it is helpful to have
someone not familiar with the proiect read your documentation and
try to follow the instructions provided for data creation and
format, input, etc. Any misdirection discovered at this stage
will save later users many hours of wasted effort.

The second technique that will be beneficial for small/one-
time applications is verification. Often the reactions of a
program/system to test data and to real data are radically dif-
ferent. Therefore, it is beneficial to acquire and test with

-7-

live data before the final turnover process is Initiated.

A third useful technique Is the use of software tools, espe-
cially text editors which will save time and effort, especially
in program modification.

LARGER APPLICATIONS

All of the Software Engineering techiques discussed earlier
should be used in larger program/systems with the benefits of
time and cost efficiency which grow in proportion to the size of
the project.

The benefits that small users derive from documentation and
verification are even greater for large programs/systems. In
larger projects, where the project development team concept is
employed, documentation is a shared on-going responsibility. As
separate entities are joined and enhanced, documentation can
serve as the coordinating factor. Here too, a final reading by a
third party should be included.

Verification of a large project can be less complicated by
the use of real test data. Only in this manner can the designers
be assured that all program interfaces match and that all
interactions are correctly taking place. Correct interfaces and
interactions can be further ensured by strict control to guaran-
tee uniform program alterations by programmers.

In large projects, the delegation of specific work assign-
ments is made easier by the Structured Programming technique. The
use of this technique, in which a complicated task is subdivided
into basic, assignable tasks, makes the project's development
more manageable.

As in smaller projects, software tools, such as text edi-
tors, can make the program development task easier, faster, and
more efficient.

Finally, a written and formally agreed upon test plan, using
live data, helps ensure the success of the project's development.

-8-

A&"- ,LrII,2

i

REFERENCES

[11 Software Engineering:Problems and Future Development, J.A.
Clapp, Mitre Corp., Prepared for Electronic Systems Divi-
sion, Nov., 1974.

[2] Jensen, R. w. and C. C. 'onies, Software Engineering,
Prentice-Hall, Inc. (1979).

[31 Bauer, F. L., "Software Engineering," Information
P71, Amsterdam:North Holland Publishing Co., p.

[4) Boehm, B. w., "Software and Its Impact:A Ouantitative
Assessment," Datamation, Vol. 19, No. 5, pp.48-59,
(May,1973).

[51 Smith, R. J. II, Development of Design Automation Codes
using Software Engineering Methods, Lawrence Livermore
Laboratory, Prepared for submission to the Ninth Annual
Aislomar Conference on Circuits, Systems and Computers,
(Nov 3-5, 1975).

[6] Computer Software Management:A Primer for Project
Ranagement and Quality Control, NBS Special. Publication
500-11, (July, 1977).

[7] Software Engineering Techniques, Wasserman, A. I., Infotech
International., (1977).

[81 Wirth, N., "On the Composition of Well-Structured Pro-
grams", Computing Surveys, Vol. 6, No. 4, pp. 247-259,
(Dec., 197Z).

[91 Mills, F. D., "Top-Down Programming in Large Systems",
Debugginq Techniques in Large Systems, Prentice-Hall, Inc.,
pp. 41-55, T=97).

[101 Maynard, J., Modular Programming, Auerbach Publications,
(1972).

[111 Stevens, W. P. et al., "Structured Design", IBM Systems
Journal, Vol. 13, No. 2, pp. 115-139, (May, 1974).

[12] Jackson, M. A., Principles of Program Design, Academic
Press, Inc., (197T).

-9-

INITIAL DISTRIBUTION

COPIES:

12 DIRECTOR

DEFENSE DOCUMENTATION CENTER (TIMA)
CAMERON STATION
ALEXANDRIA, VIRGINIA 23314

rENTER DISTRIBrUTION

COPIES:

1 18/1809 GLEISSNER, G. H.
1 1804 AVRUNIN, L.
1 1805 CUTHILL, E. H.
2 1809.3 HARRIS, D.
1 182 CAMARA, A. W.
1 184 SCHOT, J. W.
1 185 CORIN, T.
1 187 ZUBKOFF, M. J.
1 189 GRAY, G. R.

60 189.1 HIBBERT, D. J.
1 189.2 HAYDEN, H. P.
1 189.3 COOPER, A. E.

10 1892.1 STRICKLAND, J. D.
1 1892.2 SOMMER, D. V.
1 1892.3 MINOR, L. R.
1 1894 SEALS, W.
1 1896 nLOVER, A.
1 1896.2 DENNIS, L.
1 522 LIBRARY, rARDEROC
1 522.2 LIBRARY, ANNAPOLIS

11 J

DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH.
NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM-
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE.
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMURANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION

OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE
BASIS.

q.

LI

